NOOBIE2 Programming Language
Complete Documentation

Luca Tarantola

June 2025

Contents

(1 _Introduction|

2~ Simple NOOBIE]
2.1 Data Types|
2.2 Basic Commands
[2.2.1 SAY - Display Output|
222 CREATE - Variable Declarationl.
2.2.3 LISTEN - User Inputf.
2.2.4 CHANGE - Modify Variablesf
2.2.5 WHILE - Loop Execution|
2.2.6 EXIT - Program Termination|
2.3 Basic Conditionald o
2.4 Simple Examples|00
[2.4.1 Hello World Program|.
[2.4.2 Personal Greeting|.,
[2.4.3 Simple Calculator|00
2.4.4 Counting Loop|
[2.4.5 Program with User Control|

w

N IO OO UL U U R R WWw W W

3__Advanced NOOBIE]
[3.1 ~Advanced Variable Operations|
[3.1.1 Type Conversion|
[3.1.2 Variable Manipulation| 9
[3.2 Mathematical Operations|. 10
[3.3 String Operations| 10

oo oo Qo

[3.5 Advanced Program Controll, 12
[3.5.1 Conditional Program Termination|. 12
[3.5.2 Menu-Driven Programs with EXIT} 12

[3.6 Advanced Syntax Features| oL 13

Luca Tarantola

NOOBIE2 Documentation

[4 Quick Reference)

(4.1 Command Summary|
(4.2 Tips for Success| L.

5 Conclusion|

Luca Tarantola NOOBIE2 Documentation

1 Introduction

NOOBIE is a simple, intuitive programming language specifically designed for beginners who
are taking their first steps into the world of programming. Unlike complex languages that
can overwhelm newcomers, NOOBIE focuses on readability, simplicity(is case insensitive),
and educational value.

The language emphasizes natural language constructs, making it easy for students to un-
derstand programming concepts without getting bogged down in complex syntax. NOOBIE
version 2.2 supports fundamental programming constructs including variables, data types,
user input/output, conditionals, and basic operations.

This documentation is divided into two main sections: Simple NOOBIE covers the
basic concepts and commands needed to write your first programs, while Advanced NOO-
BIE explores more sophisticated features for users ready to tackle complex programming
challenges.

2 Simple NOOBIE

This section covers the fundamental concepts and commands that every NOOBIE2 program-
mer should master first.

2.1 Data Types

NOOBIE supports five basic data types that cover most programming needs:

e INT: Integer numbers for whole values (e.g., 42, -10, 0)

e FLOAT: Decimal numbers for precise calculations (e.g., 3.14, -0.5, 2.0)

STR: Text strings for words and sentences (e.g., ”Hello”, "World”)

CHAR: Single characters for individual letters or symbols (e.g., ’A’, 57, ’1")

BOOL: Boolean values for true/false logic (true, false, null)

2.2 Basic Commands
2.2.1 SAY - Display Output

The SAY command displays text or variable values to the user.
Syntax: SAY "message" or SAY variable name

. SAY "Hello, World!"

> SAY name
» SAY "Your age is: Qage"
. SAY "{5+5}"

Luca Tarantola NOOBIE2 Documentation

The Reserved Word ”end”: The word end is a special reserved variable in NOOBIE2
that represents a newline character. When used in output commands like SAY, it automat-
ically inserts a line break. This is particularly useful for formatting output across multiple
lines. You can use end anywhere in your output where you want to create a new line, making
your program’s output more readable and well-formatted.

SAY "First line" end "Second line" end

> SAY "Hello" end end "This has two line breaks"

N

2.2.2 CREATE - Variable Declaration

The CREATE command declares new variables with optional initial values.
Syntax: CREATE [CONST] <type> <name> [value]

CREATE INT age 25
CREATE STR name "John"

s CREATE STR surname Mark

CREATE CONST FLOAT pi 3.14159

s CREATE BOOL is_student

N

If the value of the variable is not specified, it will be automatically set as: 0 for INT, 0.0
for FLOAT, ”” for STR, ’\0’ for CHAR, null for BOOL
2.2.3 LISTEN - User Input

The LISTEN command gets input from the user and stores it in a variable.
Syntax: LISTEN <type> [variable name] "prompt"

LISTEN STR name "Enter your name: "
LISTEN INT age "How old are you? "

s, LISTEN BOOL "Are you a student? (true/false): "

LISTEN INT num prompt_variable

Variable Name Omission: If you don’t specify a variable name in the LISTEN com-
mand, NOOBIE2 will automatically create a variable called listened to store the user’s
input. This is useful for quick input operations where you don’t need a specific variable
name.

LISTEN STR "Enter something: "
SAY "You entered: " listened

2.2.4 CHANGE - Modify Variables

The CHANGE command updates the value of existing variables.
Syntax: CHANGE <variable> <new _value>

Luca Tarantola NOOBIE2 Documentation

CHANGE age 26
CHANGE message "Updated text"

s CHANGE is_active true

CHANGE name Q@new_name

- CHANGE sum {current_value + sum}

2.2.5 WHILE - Loop Execution

The WHILE command repeats a block of code as long as a condition remains true.
Syntax: WHILE <condition> DO <code> ENDO

CREATE INT counter 1

>, WHILE counter <= 5 DO

SAY "Count: " counter
INCREMENT counter

s ENDO

2.2.6 EXIT - Program Termination

The EXIT command immediately terminates the program execution. This is useful for ending
programs early based on certain conditions or user input.
Syntax: EXIT or EXIT "message"

Simple exit
EXIT

Exit with message

- EXIT "Program terminated by user"

Conditional exit

s CREATE STR user_choice

LISTEN STR user_choice "Do you want to continue? (
yes/no): "
IF user_choice == "no" DO
EXIT "Goodbye!"
ENDO

2.3 Basic Conditionals

Conditional statements allow your program to make decisions based on different conditions.
Syntax:

» ELSE

Luca Tarantola NOOBIE2 Documentation

IF <condition> DO
<statements>

<statements >

s ENDO

Example:

CREATE INT age

- LISTEN INT age "Enter your age: "
» IF age >= 18 DO

SAY "You are an adult!" end

s ELSE

- ENDO

SAY "You are a minor." end

2.4 Simple Examples
2.4.1 Hello World Program

My first NOOBIE2 program

> SAY "Hello, World!" end
s SAY "Welcome to NOOBIE2 programming!" end

2.4.2 Personal Greeting

Personal greeting program

> CREATE STR name
s CREATE INT age

s LISTEN STR name "What’s your name? "
 LISTEN INT age "How old are you? "

« SAY "Hello, " name "!" end

SAY "You are " age " years old." end

2.4.3 Simple Calculator

Luca Tarantola NOOBIE2 Documentation

Basic addition calculator
> CREATE INT numil
s CREATE INT num?2

s LISTEN INT numl "Enter first number: "
s LISTEN INT num2?2 "Enter second number: "

< SAY "The sum is: {numl + num2}" end

2.4.4 Counting Loop

Count from 1 to 10
> CREATE INT number 1

SAY "Counting from 1 to 10:" end
s WHILE number <= 10 DO

SAY number end

7 INCREMENT number

< ENDO
s SAY "Finished counting!"

2.4.5 Program with User Control

Program that lets user exit early
. CREATE STR response

SAY "Welcome to the greeting program!"
s LISTEN STR response "Press Enter to continue or type
’exit’ to quit: "

+ IF response == "exit" DO
8 EXIT "Thanks for visiting!"
o ENDO

SAY "Hello! Nice to meet you!" end
- SAY "Program completed successfully." end

Luca Tarantola NOOBIE2 Documentation

3 Advanced NOOBIE

This section covers more sophisticated features for users who have mastered the basics and
are ready for complex programming challenges.

3.1 Advanced Variable Operations
3.1.1 Type Conversion

Convert variables between different data types using the CONVERT command.

Syntax: CONVERT <variable> <new_type>

The CONVERT command can also use the ? operator to get the type of another variable
and use it for conversion:

CREATE INT number 42

- CONVERT number STR
s SAY "Number as string: " number

s CREATE STR text "123"

CONVERT text INT

+ SAY "Text as integer: " text

Using 7 operator to get variable type

CREATE FLOAT decimal 3.14

CREATE INT whole 10

CONVERT whole 7decimal # Converts whole to FLOAT

type

; SAY "Whole as float: " whole " (type: " 7whole ")"

Type Conversion Rules:

e INT to FLOAT: Direct conversion (e.g., 42 — 42.0)

e INT to CHAR: Converts to ASCII character if value is 0-127

e INT to STR: Converts to string representation (e.g., 42 — 742”)
e INT to BOOL: 0 becomes false, any other value becomes true

e FLOAT to INT: Truncates decimal part (e.g., 3.14 — 3)

e FLOAT to CHAR: Converts integer part to ASCII if 0-127

e FLOAT to STR: Converts to string representation

e FLOAT to BOOL: 0.0 becomes false, any other value becomes true

8

Luca Tarantola NOOBIE2 Documentation

CHAR to INT: Converts to ASCII value (e.g., ’A” — 65)
CHAR to FLOAT: ASCII value as float

CHAR to STR: Character becomes single-character string
CHAR to BOOL: Based on ASCII value (0, space, tab, 0’ are false)
BOOL to INT: true — 1, false — 0

BOOL to FLOAT: true — 1.0, false — 0.0

BOOL to STR: true — "true”, false — "false”

BOOL to CHAR: true — '1’, false — 0’

STR to INT: Converts to string length

STR to FLOAT: String length as float

STR to BOOL: Empty/whitespace strings are false, others true

STR to CHAR: Works only for single-character strings

3.1.2 Variable Manipulation

Advanced commands for manipulating variable values:

' # Increment and decrement

, CREATE INT counter 5

;s INCREMENT counter # counter becomes 6

DECREMENT counter # counter becomes 5

Swap variables
CREATE STR first "Hello"

<« CREATE STR second "World"

9

10

SWAP first second # first="World", second="Hello"

1 # Reset and delete
» RESET counter # Sets to default value for

type

» DEL unused_variable # Removes variable from memory

Luca Tarantola NOOBIE2 Documentation

3.2 Mathematical Operations
NOOBIE2 supports different operators:
e Arithmetic Operators: +, -, *, /, %, **
e Relational Operators <, >, |= == >= <=
e Logical Operators and, or, not, xor

e Value Operators @ (expand the value of a variable), ? (expand the type of a variable,
only in strings), {} (evalute expression in strings)

e Precision Control: ROUND for floating-point precision

. CREATE FLOAT pi 3.14159265

. CREATE INT base 2

;s CREATE INT exponent 8

s SAY "Pi rounded to 2 places: "
s ROUND pi 2

+ SAY pi

o SAY "2 to the power of 8: {base ** exponentl} " end
o SAY "17 divided by 5: {17 / 5} " end
o SAY "17 modulo 5: {17 % 5} " end

3.3 String Operations

Advanced string manipulation capabilities:

. CREATE STR message "Hello World"

s # String transformations

. UPPERCASE message # "HELLO WORLD"
s SAY "Uppercase: " message

- LOWERCASE message # "hello world"
s SAY "Lowercase: " message
o« REVERSE message # "dlrow olleh"
1 SAY "Reversed: " message

10

Luca Tarantola NOOBIE2 Documentation

3.4 Random Number Generation

Generate random values for games, simulations, and testing:
Syntax: RANDOM <type> <min> <max> [variable]

. # Generate random integer between 1 and 100
- RANDOM INT 1 100 dice_roll

s SAY "You rolled: " dice_roll end

s # Generate random float between 0.0 and 1.0
s RANDOM FLOAT 0.0 1.0 probability

- SAY "Random probability: " probability end

o # Generate random character (ASCII 65-90 for
uppercase letters)

o RANDOM CHAR 65 90 random_letter

. SAY "Random letter: " random_letter end

Boolean Random Generation: For BOOL type, the range parameters have special
meanings:

e Range 1-2: Generates only true or false (excludes null)

e Range 1-3: Generates true, false, or null (includes all BOOL values)

 # Generate random boolean (true/false only)
- RANDOM BOOL 1 2 coin_flip

s IF coin_flip DO

1 SAY "Heads!" end

s ELSE

6 SAY "Tails!" end

- ENDO

o+ # Generate random boolean including null
- RANDOM BOOL 1 3 three_state

. IF three_state == true DO
SAY "True state" end
s ELSE
4 IF three_state == false DO

SAY "False state" end

11

Luca Tarantola NOOBIE2 Documentation

o ENDO

ELSE
SAY "Null state" end
ENDO

3.5 Advanced Program Control
3.5.1 Conditional Program Termination

The EXIT command can be used strategically in complex programs to handle error conditions
or user-requested termination:

Error handling with EXIT

, CREATE INT divisor
s LISTEN INT divisor "Enter a divisor: "

s IF divisor == 0 DO

<« ENDO

SAY "Error: Cannot divide by zero!" end
EXIT "Program terminated due to invalid input"
SAY "Result: {100 / divisorl}" end

3.5.2 Menu-Driven Programs with EXIT

Interactive menu program

» CREATE STR choice ""

WHILE choice != "4" DO

SAY "=== Main Menu ==="

SAY "1. Say Hello" end

SAY "2. Calculate Sum" end

SAY "3. Show Random Number" end
SAY "4. Exit Program" end

LISTEN STR choice "Choose an option: "

IF choice == "1" DO
SAY "Hello, User!" end

12

Luca Tarantola NOOBIE2 Documentation

15 ELSE
16 IF choice == "2" DO
7 CREATE INT a
18 CREATE INT b
19 LISTEN INT a "First number: "
20 LISTEN INT b "Second number: "
21 SAY "Sum: {a + b}" end
ELSE
IF choice == "3" DO
RANDOM INT 1 10 rand_num
25 SAY "Random number: " rand_num end
26 ELSE
27 IF choice == "4" DO
EXIT "Thank you for using the
program!"
20 ESE
50 SAY "Invalid choice. Please try
again." end
31 ENDO
52 ENDO
33 ENDO
34 ENDO

»» ENDO

3.6 Advanced Syntax Features
3.6.1 Special Syntax Elements

e Direct Variable Use: Simply use the variable name in expressions and output
e String Variable Output: Use quotes with variable names for formatted output
e Mathematical Expressions: {expression} (evaluates math in strings)

e Special Variables: @end (represents newline character)

3.6.2 Comments

NOOBIE2 supports single-line comments:

+# This 1s a single-line comment

13

Luca Tarantola

NOOBIE2 Documentation

, CREATE INT x 10 # Inline comment

3.7 Complex Examples
3.7.1 Advanced Calculator

' # Advanced calculator with multiple operations and

loop
. CREATE STR continue_calc "yes"
. SAY "=== Advanced Calculator ===" end
s WHILE continue_calc == "yes" DO
LISTEN FLOAT numl "Enter first number: "
LISTEN CHAR operation "Enter operation (+, -, *,
/[, k%, Y "

LISTEN INT num?2 "Enter s

11 IF operation == "+" DO
12 SAY "Result: " {numl
ELSE
14 IF operation == "-"
15 SAY "Result: " {
16 ELSE
: IF operation ==
18 SAY "Result:
19 ELSE
20 IF operation
21 IF num?2
SAY
end
ELSE
SAY
' end
EXIT
due to error"
ENDO

14

econd number: "

+ num2} end

DO
numl - num2} end

ll*ll DD
" {numl * num2} end

== u/n DO
0 DO
"Result: " {numl / num2}

"Error: Division by zero

"Calculator terminated

Luca Tarantola NOOBIE2 Documentation

ENESIES
SAY "Unknown operation!" end
ENDO
ENDO
ENDO
ENDO

LISTEN STR continue_calc "Continue? (yes/no): "
IF continue_calc == "no" DO
EXIT "Calculator session ended by user"
57 ENDO
+ ENDO

SAY "Thanks for using the calculator!"

3.7.2 Number Guessing Game

Number guessing game with loops
- CREATE INT secret_number

» CREATE INT guess

CREATE INT attempts O

s CREATE BOOL game_won false

- RANDOM INT 1 100 secret_number

s SAY "=== Number Guessing Game ===" end
9 SAY "I’m thinking of a number between 1 and 100!"
end

SAY "Type -1 to quit at any time." end

:# Game loop
; WHILE game_won == false DO
LISTEN INT guess "Enter your guess: "

IF guess == -1 DO

EXIT "Thanks for playing! The number was "
secret_number

15

Luca Tarantola NOOBIE2 Documentation

ENDO
INCREMENT attempts

IF guess == secret_number DO
CHANGE game_won true
SAY "Congratulations! You guessed it in "
attempts " attempt(s)!" end
ELSE
IF guess < secret_number DO
SAY "Too low! Try again." end
ELSE
SAY "Too high! Try again." end
ENDO
ENDO

»» ENDO

5+ SAY "Thanks for playing!"

3.8

Best Practices

. Use descriptive variable names: Choose names that clearly indicate the variable’s

purpose

Comment your code: Explain complex logic and important sections

. Initialize variables: Always give variables initial values when possible

Handle edge cases: Check for division by zero, invalid input, etc.

Use constants for fixed values: CREATE CONST for values that shouldn’t change
Organize your code: Group related operations together

Test thoroughly: Try different inputs to ensure your program works correctly

Use EXIT strategically: Provide clean program termination with informative mes-
sages

Handle errors gracefully: Use EXIT to prevent crashes from invalid operations

16

Luca Tarantola

NOOBIE2 Documentation

4

4.1

Quick Reference

Command Summary
SAY - Display output
CREATE - Declare variables
LISTEN - Get user input
CHANGE - Modify variables
CONVERT - Change variable types
IF/ELSE/ENDO - Conditional execution
WHILE/ENDO - Loop execution
RANDOM - Generate random values
EXIT - Terminate program
INCREMENT/DECREMENT - Modify numeric values
UPPERCASE/LOWERCASE/REVERSE - String operations
SWAP - Exchange variable values
DEL - Delete variables
RESET - Reset to default values

ROUND - Round floating-point numbers

Tips for Success

Variables are case-insensitive in NOOBIE2

Use {} for mathematical expressions within strings
The @end variable represents a newline character
Always test your programs with different inputs

Start simple and gradually add complexity

No @ symbol needed for variable access in most contexts

Use EXIT to provide clean program termination

Include helpful messages with EXIT for better user experience

17

Luca Tarantola NOOBIE2 Documentation

5 Conclusion

NOOBIE2 provides a gentle introduction to programming concepts while offering enough
power for meaningful projects. By mastering the Simple NOOBIE concepts first, then pro-
gressing to Advanced NOOBIE features, students can build a solid foundation in program-
ming logic and problem-solving.

The language’s natural syntax and comprehensive error handling make it an ideal choice
for educational environments, coding bootcamps, and self-directed learning. As students be-
come comfortable with NOOBIE2, they’ll find the transition to more complex programming
languages much smoother.

Remember: every expert programmer started as a beginner. NOOBIE2 is designed to
make that journey as enjoyable and productive as possible. Happy coding!

18

	Introduction
	Simple NOOBIE
	Data Types
	Basic Commands
	SAY - Display Output
	CREATE - Variable Declaration
	LISTEN - User Input
	CHANGE - Modify Variables
	WHILE - Loop Execution
	EXIT - Program Termination

	Basic Conditionals
	Simple Examples
	Hello World Program
	Personal Greeting
	Simple Calculator
	Counting Loop
	Program with User Control

	Advanced NOOBIE
	Advanced Variable Operations
	Type Conversion
	Variable Manipulation

	Mathematical Operations
	String Operations
	Random Number Generation
	Advanced Program Control
	Conditional Program Termination
	Menu-Driven Programs with EXIT

	Advanced Syntax Features
	Special Syntax Elements
	Comments

	Complex Examples
	Advanced Calculator
	Number Guessing Game

	Best Practices

	Quick Reference
	Command Summary
	Tips for Success

	Conclusion

